BIUTEE* and the NIST

(BIUTEE under Search)

Shachar Mirkin, Roy Bar-Haim, Jonathan Berant, Ido Dagan, Eyal Shnarch, Asher Stern, Idan Szpektor

TAC 2009 / RTE Track

Outline

- BIUTEE
 - System architecture
 - Knowledge Resources
- Retrieval step
- Discourse impact on inference
 - Analysis of inference-oriented discourse phenomena
 - Our implementation to address some identified phenomena
- Submissions & Results
- Conclusions & Future Work

BIUTEE: System Architecture (as in RTE4)

BIUTEE: Inference Rules are Tree Transformations

- Uniform representation for a vast range of semantic knowledge
- Single unified inference mechanism
 - Apply tree transformations
 - Rules can be chained (vs. alignments!)
 - Generate consequents

- Rule applications on T generate many consequent trees
 - Efficiently stored in a Compact Forest F (EMNLP-09)

BIUTEE: Approximate Matching

- Measure similarity between processed H and F
 - Compensate for knowledge gaps

Features:

- Coverage of H by F
 - Lexical coverage (words, verbs, numbers, named entities)
 - Local syntactic coverage (edges)
 - Global structural matching
 - Aim to match maximal sub-trees of H in F
- Predicate coverage in F
- Polarity mismatch (forgot to buy vs. bought)
- Argument match and coverage for corresponding predicates in F & H

Candidate Retrieval

- Dev set contains ~20K T:H pairs
- Only 810 (4%) are entailing
 - Assuming similar ratio on test set
- A naïve approach:
 - Reduce the task to T:H pairs
 - Apply main-task techniques on each pair
 - Inefficient
 - Won't be feasible in larger scale search settings (e.g. QA)
- → A prior step of candidate retrieval is necessary

Retrieving Candidates in RTE5

- Entailment-based query expansion
 - Using a set of entailment-rules resources for recall increase
- Retrieval criterion:
 - Coverage percentage of H by the sentence
 - Future work: incorporate better IR scoring functions
- Resource-set & coverage percentage tuned to optimize inference performance
 - Rather than retrieval performance
- Similar flavor as "IR for QA"

Discourse Impact on Inference - Analysis

- Goal:
 - Identify & categorize discourse phenomena that impact inference
 - Prioritize according to phenomena distribution
- Analyzed a sample of the positive examples
 - Marking only relations that are relevant for inferring H
- Results guided our consequent implementation

Incorporating Anaphor Information

- Frequently, H includes the antecedent of an anaphor in T
- ⇒ Identifying the coreference relation needed to infer H
- Available tools miss many of these relationships
- Entailment knowledge resources may help :
 Kamchatka → eastern Russia
 - .. sometimes such information is missing or uncertain (example soon)
 - ⇒ Useful to incorporate semantic knowledge for co-reference resolution

H: The AS-28 accident happened in eastern Russia

T*: The bathyscaphe submersible had only 24 hours of oxygen in reserve when it became stuck ... in the bay of Kamchatka in far eastern Russia

T: The vessel rose to the surface at 4:26 p.m. local time ... more than 600 feet below the surface off the Kamchatka Peninsula.

Compensating for Poor Performance of Co-reference Tools

Initial step - our implementation:

- Consider two NPs as co-referring if:
 - 1. Their heads are identical
 - 2. No semantic incompatibility is found between their modifiers (Note: relevant for entailment inference too)
- Implemented incompatibility types:
 - Antonymy: first flight vs. last flight
 - Mismatching numbers: 560 dollars vs. 1,200,000 dollars
- Further incompatibility types can be considered:
 - Co-hyponyms
 - Semantically disjoint modifiers
 - first vs. second ; 747's pilot vs. 747's flight attendant

Co-references Involving Verbal Predicates

- Out of the scope of most available co-reference tools
 - V-V or V-N
- Incorporating knowledge:
 - Considering the relatedness between retreat and melt can help identify the coreference relation
 - Not necessarily an entailment relationship
- Not addressed yet in our implementation

T: The melting ice may also affect polar bears, and whales, who live off the sea life beneath the ice.....

T: "Everyone wants to know: Is the ice retreating because of global warming?

Implicit Information Required to Infer H

- Many entailing sentences refer implicitly to information required for inferring H
 - May be viewed as bridging anaphora [Thanks, CELCT]
- A prominent case "Global" information:
 - Mentioned at the beginning of the document (title / first few sentences)
 - Assumed known from that point on
- Initial implementation:
 - 1. Identify key terms in each document TFIDF
 - 2. Add top-k terms as nodes directly attached to the root of T
 - → A global term found in the hypothesis is lexically matched in each sentence
 - Even if not explicitly mentioned

H: Mine accidents cause deaths in China

T*: TWO MORE MINE ACCIDENTS IN CHINA BRING WEEK'S DEATH TOLL TO 60

T: So far this week, four mine disasters have claimed the lives of at least 60 workers and left 26 others missing

Cross-documents Coreference Resolution

- Quite often, cross-document co-reference resolution is needed for inferring H
 - Not available in typical co-reference tools
- Usually involved alternative names of the same object
 - Xena : ub313
 - Submarine : AS-28
 - (Once identified) can be solved by a substitution of terms
- Not addressed yet in our implementation

Locality of Entailment

- Assumption: Entailing sentences tend to come in bulks
 - For discourse coherence, discussion of a specific issue is continuous
 - Especially in long documents
- → If a sentence entails H, adjacent sentences are more likely to entail it as well
- Addressed by a meta-classifier
 - 1. Base classifiers make initial entailment decisions
 - 2. Meta-features computed to "smooth" classification positions and reflect bulks of entailments
 - Used by the meta-classifier in a 2nd classification pass

Submissions

BIU1: Lexical Coverage

- Determine entailment purely based on term coverage of H by T
 - using the retrieval system's output directly
- Experimentally picked Wiki resource with a 50% coverage threshold
 - Overall, resources for lexical entailment rules did not contribute much

BIU2: BIUTEE at sentence-level

- Single classifier, with all knowledge resources
- Features extracted for each sentence separately
- Test-set sentences pre-filtered by the retrieval system
 - no resources for expanding retrieval
- Include "globally prominent" words in each sentence

BIU3: BIUTEE at document-level - Our complete system

- BIU2 +
 - Document-level features
 - Meta-classifier, SVM & Naïve-bayes

Results

• Micro-averaged results:

Run	Suggested Sentences	P(%)	R(%)	F1(%)
Search-BIU1	1199	37.03	55.50	44.42
Search-BIU2	946	40.49	47.88	43.87
Search-BIU3	1003	40.98	51.38	45.59

Conclusions

- First step towards addressing the search task
 - Identified key issues, initial solutions
- Major contribution: analyzing discourse impact on inference, identifying needed research in:
 - Discourse technology to support inference needs
 - Inference technology to incorporate discourse information
- Complete system just slightly surpassed lexical baseline
 - Simple lexical methods are initially (yet again) difficult to beat
 - Still, document-level processing is helpful
- Open questions
 - Can we improve lexical match by entailment expansions?
 - Can we surpass lexical methods in summarization search?

Future Work

- Analysis , analysis , analysis
 - Resources, features, components
- Lexical methods
 - Incorporate IR/QA know-how
 - Improve expansion algorithms
- Reconsider our approximate matching component
 - May improve syntactic/semantic inference contributions
- Discourse:
 - Co-reference: better performance, incorporate verbal expressions, identify implicit references
 - Inference: utilize the above info

Thank you!

Questions?

